SHINI

Масляный термостат

STM-910

STM Series

Принцип кодирования

Опции *

Первые 2 цифры: мощность нагревателей кВт Следующие 2 цифры: мощность помпы $\times 10^{-1} \mathrm{HP}$

Shini температурный контроллер

Особенности

- Контроллер включает ЖК дисплей 3,2 " для удобной работы.

STM-910-D

- Оснащен 7ми денвным таймером работы термостата. Языки управления Китайский/Английский. Температура задается в ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$.
- Точность поддержания температуры с помощью P.I.D. регулятора в пределах $\pm 0,5^{\circ} \mathrm{C}$.
- Включает в себя насос выкой эффективности работающий с термопередающей жидкостью в заданных температурных режимах.
- Включает в себя множество систем защиты: от неправильного подключения фаз, от перегрузок, от низкого давления автоматически оповещает визуальным сигналом.
- Нагреватель изготовлен из нержавеющей стали.
- Стандартные моедли STM с температурой нагрева до $200^{\circ} \mathrm{C}$, высокотемпературные модели STM-HT с температурой нагрева до $300^{\circ} \mathrm{C}$.
- STM-HT комплектуется магнитной помпой из нержавеющей стали с повышенным сопративлением высокому давлению, для избежания аварийных ситуаций при высоких температурах.
- Включает функцию связи через Enternet для online мониторинга.

Опции

- Тефлоновые шлаги, коллекторы и масло комплектуются опционально.
- Опционально комплектуюется датчиком для отображения тепературы масла на выходе.
- Может комплектоваться зумером, обозначается "В".
- Магнитная помпа (кроме STM-3650 и STM-D), обозначается "M".

Применение

Масляные термостаты STM бывают стандартные до $200^{\circ} \mathrm{C}$ и высокотемпературные до $300^{\circ} \mathrm{C}$. Применяются для нагрева и поддержания температуры масла, которое нагревает пресс-форму или схожее по тех. требованиям оборудование. Масло циркулирует в закрытом контуре с помощью помпы. Для нагрева используются трубчатые нагреватели, для охлаждения трубчатый теплообменник в баке с маслом по которому поступает холодная вода от чиллера. Новый тип

STM Series

Принцип работы

Масло нагнетается насосом в бак с нагревательными элементами для нагрева до заданной температуры и затем подается в форму, цикл повторяется. Если в процессе работы температура масла превышает заданную, то система управления активирует электромагнитный клапан для охлаждения масла водой через трубчатый теплообменник до заданных параметров. В случае если температура продолжает расти то при заданной температуре срабатывает защита EGO, подается звуковой сигнал и и останавливает работу оборудования. Система имеет защиту от низкого уровня масла при срабатывании которой останавливается работа.

Схема работы STM и STM-HT

Характеристики насоса

Примечание: Удельная теплоемкость воды $=1$ ккал $/ к г^{\circ} \mathrm{C}$ Удельная теплоемкость масла $=0,49$ ккал $/ к г{ }^{\circ} \mathrm{C}$ Плотность воды $=1$ кг/л
Средняя плотность нагретого масла $=0,842$ кг $/ л$ Врямя для нагрева = время нагрева от температуры окружающей среды до заданной.

Формула расчета мощности термостата

Мощность нагревателя (кВт) $=$ вес пресс-формы (кг) $х$ удельную теплоемкость (ккал/кг ${ }^{\circ}$ С) х разность температур пресс-формы и окружающей среды (${ }^{\circ} \mathrm{C}$) х коэффициент безопасности / продолжительность нагрева (ч) / 860

Коффициент безопансости в диапазоне 1,3-1,5
Расход (л/мин) $=$ мощность нагревателя (кВт) $\times 860 /$ средняя удельная теплоемкость (ккал/кг ${ }^{\circ} \mathrm{C}$) x плотность теплоносителя (кг/л) \times разность температур на входе и выходе ($\left.{ }^{\circ} \mathrm{C}\right)$ х время (60 мин)

STM Series

Спецификация

Модель		STM-607	STM-607D	STM-910	STM-910D	STM-1220	STM-2440	STM-3650	$\begin{aligned} & \text { STM- } \\ & 907 \mathrm{HT} \end{aligned}$	$\begin{aligned} & \text { STM- } \\ & 1215 \mathrm{HT} \end{aligned}$	$\begin{aligned} & \text { STM- } \\ & 2440 \mathrm{HT} \end{aligned}$
Макс. темпер.		$200^{\circ} \mathrm{C} / 392^{\circ} \mathrm{F}$							$300^{\circ} \mathrm{C} / 572^{\circ} \mathrm{F}$		
Нагреватель (кВт)		6	6×2	9	9×2	12	24	36	9	12	24
Мощность насоса $(50 / 60 \mathrm{~Hz})$ (кBт)		0.55/0.63	$2 \times \frac{0.55}{2 \times 0.63}$	0.75/0.92	$2 \times 0 . \frac{75}{2 \times 0.92}$	1.5/1.9	2.8/3.4	4/4	0.5/0.63	1.0/1.1	2.8/3.43
Макс. поток (50/60Hz)	L/min	27/30	$2 \times \frac{27}{2 \times 30}$	42/50	$\frac{2 \times 42}{2 \times 50}$	74/84	90/90	100/100	28/34	58/63	100/100
	$\mathrm{ga} / \mathrm{min}$	7.1/7.9	$2 \times \frac{7.1}{2 \times 7.9}$	11/13.2	$\frac{2 \times 11}{2 \times 13.2}$	19.5/22	23.7/23.7	26.4/26.4	7.4/9	15.3/16.6	26.4/26.4
Макс. давление (bar) $(50 / 60 \mathrm{~Hz})$		3.8/5	3.8/5	5.0/6.4	5.0/6.4	6.2/7.2	8.0/10.2	8.0/8.0	4.8/6.5	5.8/6.8	8/9
Количество нагрев. баков		1	2	1	2	1	2	3	1	1	2
Глав/Доп бак	L	6/3.2	$2 \times 6 / 2 \times 3.2$	6/3.2	$2 \times 6 / 2 \times 3.2$	6.8/11.8	11/16	14/16	6/6	6.8/16	16/25
	gal	1.58/0.85	$\begin{aligned} & 2 \times 1.58 / \\ & 2 \times 0.85 \end{aligned}$	1.58/0.85	$\begin{aligned} & 2 \times 1.58 / \\ & 2 \times 0.85 \end{aligned}$	1.8/3.1	2.9/4.2	3.7/4.2	1.58/1.58	1.8/4.2	4.2/6.6
Метод охлаж-ния		Косвенное, через трубчатый теплообменник									
Резьбы на коллекторе (Дюйм) *		$3 / 8(2 \times 2)$	$3 / 8(4 \times 2)$	$3 / 8(2 \times 2)$	$3 / 8(4 \times 2)$	$3 / 8(4 \times 2)$	$1(1 \times 2)$	$1^{1 / 4}(1 \times 2)$	3/8 (2×2)	$1(1 \times 2)$	$1(1 \times 2)$
Резьбы вх/вых (Дюйм)		$3 / 4 / 3 / 4$	$3 / 4 / 3 / 4$	$3 / 4 /^{3 / 4}$	$3 / 4 /^{3 / 4}$	1 / 1	1 / 1	$1^{1 / 4} / 1^{1 / 4}$	$3 / 4 /^{3 / 4}$	1 / 1	1 / 1
Размеры ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)	mm	$\begin{gathered} 700 \times 350 \\ \times 900 \\ \hline \end{gathered}$	$\begin{gathered} 700 \times 535 \\ \times 900 \\ \hline \end{gathered}$	$\begin{gathered} 700 \times 350 \\ \times 900 \\ \hline \end{gathered}$	$\begin{gathered} 700 \times 535 \\ \times 900 \end{gathered}$	$\begin{gathered} 755 \times 320 \\ \times 900 \\ \hline \end{gathered}$	$\begin{gathered} 900 \times 407 \\ \times 1009 \end{gathered}$	$\begin{gathered} 928 \times 407 \\ \times 1000 \end{gathered}$	$\begin{gathered} 695 \times 280 \\ \times 740 \end{gathered}$	$\begin{gathered} 1000 \times 400 \\ \times 800 \end{gathered}$	$\begin{gathered} 1050 \times 515 \\ \times 910 \end{gathered}$
	inch	$28 \times 13.8 \times 35.4$	$28 \times 21 \times 35.4$	$28 \times 13.8 \times 35.4$	$28 \times 21 \times 35.4$	$29.7 \times 12.6 \times 5.4$	$35 \times 16 \times 39.7$	$36.5 \times 16 \times 39.4$	$27 \times 10 \times 29$	$31 \times 13 \times 32$	$39.4 \times 20 \times 35.8$
Bec	kg	65	120	70	140	100	145	155	75	100	190
	lb	143	265	154	308	220	319	341	165	220	418

Примечание: 1) "*"комплектуется опционально.
2) "D" двухконтурная модель. "НТ" высокотемпературная модель.
3) Условия испытаний насоса: частота $50 / 60$ Гц, очищенная вода при температуре $20^{\circ} \mathrm{C}$. Допустимая погрешность для максимальных показателей $\pm 10 \%$
4) При долговременной работе температура не должна превышать 180 С
5) Питание: ЗФ, 230/400/460/575в, 50/60 Гц.

2017-05-05-04 Copyrights Reserved.

